Step of Proof: fun_thru_spread
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
fun
thru
spread
:
A
:Type,
B
:(
A
Type),
p
:(
x
:
A
B
(
x
)),
C
,
D
:Type,
f
:(
C
D
),
b
:(
x
:
A
B
(
x
)
C
).
f
(let
x
,
y
=
p
in
b
(
x
,
y
)) = let
x
,
y
=
p
in
f
(
b
(
x
,
y
))
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
:
A
Type
C1:
3.
p
:
x
:
A
B
(
x
)
C1:
4.
C
: Type
C1:
5.
D
: Type
C1:
6.
f
:
C
D
C1:
7.
b
:
x
:
A
B
(
x
)
C
C1:
f
(let
x
,
y
=
p
in
b
(
x
,
y
)) = let
x
,
y
=
p
in
f
(
b
(
x
,
y
))
C
.
Definitions
t
T
,
x
(
s
)
,
x
:
A
.
B
(
x
)
origin